Current State of Enterprise AI Adoption, A Tale of Two Cities

Cody Crumrine

August 5th - Vail, Colorado

I’m here as an “Industry Expert” for a 2-day conference. My role is to chat with a variety of analysts about trends in everyone’s hot topic of the season: Generative AI. Candidly, I’m much more excited to find the other “experts” in the hotel and pick their brains.

It’s large enterprise I’m interested in. During my career in data engineering I’ve worked with some large organizations. Fortune 500 (and 100) household names. But over the past few years I’ve focused on consulting for smaller customers. The work I do with generative AI has been for startups, communities, medium sized agencies…

So I’m itching to pull back the curtain on enterprise AI use cases. And what luck! The opening keynote is a panel discussion on exactly that topic!

I sit down with coffee and a notebook, ready to hear about advanced use cases, complex implementations, best practices for the “AI data stack”...

…and none of it comes.

Enterprise AI Adoption is Broad and Shallow

Are large organizations getting into AI? Yes. But they’re taking it slow. The most common starting point? Company wide subscriptions to “co-pilot” software, maybe some large scale document search and summary tools.

Knowledge Graphs? Nope.

Custom Automation? Nope.

Agents? Nope.

I asked one of the panelists later: “When companies ask you to help implement those use cases… how many of them want to start there because it meets a specific goal (or a step towards one?) And how many just think they should do “something with AI?”

“I’d say 9 out of 10 are the latter,” she said.

This is a good time to fast-forward.

August 20th - Austin, Texas

I’m sitting in a Tribe.AI event in AWS Austin HQ. Along with folks from Tribe, Vista and AWS, the room is full of reps from companies that sent them on that vague mission: “do ‘something’ with AI”.

Some of them are there with no more of a plan than that. Some of them have a laser specific goal. Most are in between. One tells me “we’re mandated to release a customer-facing AI feature by Q4.” Most have some enterprise license to a co-pilot or ChatGPT, Claude, etc.

But the difference in tone here, 15 days later, is stark. In Vail, I spoke with analysts and practitioners about what the state of AI adoption is. Here, with Tribe, we’re trying to shape it.

Our goal over the next two days is not to send anyone away with a generic plan to “try AI out”. Instead, we’ll work with the organizations in attendance to make sure each of them leave with a clear plan for a project that will drive a key company level goal (like an OKR), and a scoped POC for the work to prove it out.

This is not easy! There is still a significant pull toward the simple “let’s just throw a summary generator here” and the grandiose “let’s automate the whole business!” But we get there, and I’m impressed at the progress we make in two short days.

Still, I notice that a few pessimistic trends from my prior trip carry over.

Noticeably, despite a push to find projects that will drive revenue, no one leaves the workshop with a plan to add a new feature they can upcharge for. One shares a new feature they hope will drive more usage. Most focus on reducing cost or creating efficiency.

That’s something I’m seeing across the board, and I understand why it’s seen as a bearish sign. (I’m an optimist myself.)

So lists get into those signs - positive and negative. Here’s a breakdown of a few trends I’ve noticed in my own work, at conferences and workshop like these, and in conversations with other practitioners.

A clear focus on Efficiency…

We just said this, but it bears repeating. For the most part, those finding ROI from Gen AI are finding it in the bottom line, not the top line.

…with Personal Productivity leading the charge.

AI powered automations, autonomous agents, and other tools can bring tons of efficiency… but did you know that OpenAI’s usage (at the time of writing) is less than 15% API? The number of people adopting a chat assistant or co-pilot in their day-to-day work dwarfs any other Gen AI use case.

A preference for Small Bets

Expectations have cooled a bit on Gen AI as a magic bullet. Execs are realizing it might not be able to do everything they think it can. The desire to adopt is still there, but there’s a matching desire to invest as little as possible to find out.

For some organizations this means sticking to thebroad and shallow” use cases we’ve described. For those going deeper, it means a laser tight focus - often with an internal POC to sound out an idea before dedicating funds. 

No AI Data Infrastructure

A lot of folks want to know if there’s a winning “AI data stack” yet. There isn’t. Data engineering for AI is, at most organizations, still ad-hoc and unscalable. There seem to be two causes for this:

  1. The aforementioned desire to make smaller bets: Organizations are still in the proving stage and don’t want to invest in robust solutions for use cases that may not stick around.
  2. LLMs are great at working with long-form and unstructured data. In the past this data has been very difficult to work with in any automated way, so these data sources are almost never a part of a company’s existing data pipeline.

1 + 2 = a lot of “AI data infrastructure” basically being a python script to pull data direct from source, create embeddings, and chuck them into a vector DB.

A gap between Innovation and Adoption

I’ll pick on knowledge graphs for a minute here. If you follow anyone on LinkedIn that writes about AI you’ll hear us talk about Graph RAG. It’s an exciting topic! Not only do knowledge graphs help RAG work better, LLMs make building knowledge graphs easier!

But I’ve started poking around other dev, consultants, etc. and asking “Have you seen anyone using a knowledge graph in production?” So far I’ve got a lot of “No”s and only 1 loney “Yes” that was quickly quickly followed with “...but not at the enterprise level”.

I’ll pick on LangChain too (don’t worry, I’m a big fan.) If you look through the solutions libraries in LangChain’s documentation you may start to think that every possible LLM use case has been solved already! But you’ll learn (I have through experience) that very few of them have been tested (or will hold up) at scale.

This is common for any new tech, but it seems accentuated here. The gap between “I’ve tried it” and “we’ve implemented it” is large.

And still plenty of Excitement!

Is this all bad news? Signs of an AI winter? 

Lack of adoption, shallow use cases, no top-line ROI, small bets…!?

Don’t panic yet. Despite a general cooling of expectations I haven’t seen a cooling of interest.

Organizations large and small are NOT stepping away from… they just seem to be getting smarter about it. And that’s good in the long run.

Related Stories

Applied AI

From PoC to Production: Scaling Bright’s Training Simulations with Tribe AI & AWS Bedrock

Applied AI

The Hitchhiker’s Guide to Generative AI for Proteins

Applied AI

10 Expert Tips to Improve Patient Care with AI

Applied AI

Tribe welcomes data science legend Drew Conway as first advisor 🎉

Applied AI

How to Enhance Data Privacy with AI

Applied AI

Common Challenges of Applying AI in Insurance and Solutions

Applied AI

10 Common Mistakes to Avoid When Building AI Apps

Applied AI

AI Implementation: Ultimate Guide for Any Industry

Applied AI

AI in Finance: Common Challenges and How to Solve Them

Applied AI

How AI Improves Knowledge Process Automation

Applied AI

How to Evaluate Generative AI Opportunities – A Framework for VCs

Applied AI

How data science drives value for private equity from deal sourcing to post-investment data assets

Applied AI

Understanding MLOps: Key Components, Benefits, and Risks

Applied AI

AI Consulting in Finance: Benefits, Types, and What to Consider

Applied AI

How to Improve Sales Efficiency Using AI Solutions

Applied AI

Everything you need to know about generative AI

Applied AI

Navigating the Generative AI Landscape: Opportunities and Challenges for Investors

Applied AI

AI and Predictive Analytics in the Cryptocurrency Market

Applied AI

Top 9 Criteria for Evaluating AI Talent

Applied AI

Top 8 Generative AI Trends Businesses Should Embrace

Applied AI

How to Reduce Costs and Maximize Efficiency With AI in Finance

Applied AI

Machine Learning in Healthcare: 7 real-world use cases

Applied AI

AI in Portfolio Management

Applied AI

Scalability in AI Projects: Strategies, Types & Challenges

Applied AI

3 things we learned building Tribe and why project-based work will change AI

Applied AI

How to Reduce Costs and Maximize Efficiency With AI in Insurance

Applied AI

What the OpenAI Drama Taught us About Enterprise AI

Applied AI

5 machine learning engineers predict the future of self-driving

Applied AI

7 Effective Ways to Simplify AI Adoption in Your Company

Applied AI

Thoughts from AWS re:Invent

Applied AI

Segmenting Anything with Segment Anything and FiftyOne

Applied AI

8 Ways AI for Healthcare Is Revolutionizing the Industry

Applied AI

Announcing Tribe AI’s new CRO!

Applied AI

7 Key Benefits of AI in Software Development

Applied AI

AI in Private Equity: A Guide to Smarter Investing

Applied AI

AI for Cybersecurity: How Online Safety is Enhanced by Artificial Intelligence

Applied AI

Using data to drive private equity with Drew Conway

Applied AI

Generative AI: Powering Business Growth across 7 Key Operations

Applied AI

The Secret to Successful Enterprise RAG Solutions

Applied AI

How to Seamlessly Integrate AI in Existing Finance Systems

Applied AI

AI Consulting in Healthcare: The Complete Guide

Applied AI

How to Measure ROI on AI Investments

Applied AI

7 Strategies to Improve Customer Care with AI

Applied AI

A Guide to AI in Insurance: Use Cases, Examples, and Statistics

Applied AI

AI in Construction in 2024 and Beyond: Use Cases and Benefits

Applied AI

Top 5 AI Solutions for the Construction Industry

Applied AI

AI in Banking and Finance: Is It Worth The Risk? (TL;DR: Yes.)

Applied AI

Top 10 Common Challenges in Developing AI Solutions (and How to Overcome Them)

Applied AI

10 AI Techniques to Improve Developer Productivity

Applied AI

Write Smarter, Not Harder: AI-Powered Prompts for Every Product Manager

Applied AI

A primer on generative models for music production

Applied AI

How to Build a Data-Driven Culture With AI in 6 Steps

Applied AI

Tribe's First Fundraise

Applied AI

How to Optimize Supply Chains with AI

Applied AI

No labels are all you need – how to build NLP models using little to no annotated data

Applied AI

Welcome to Tribe House New York 👋

Applied AI

How AI for Fraud Detection in Finance Bolsters Trust in Fintech Products

Applied AI

How AI is Cutting Healthcare Costs and Streamlining Operations

Applied AI

How to Measure and Present ROI from AI Initiatives

Applied AI

Why do businesses fail at machine learning?

Applied AI

10 ways to succeed at ML according to the data superstars

Applied AI

How 3 Companies Automated Manual Processes Using NLP

Applied AI

AI-Driven Digital Transformation

Applied AI

AI in Customer Relationship Management

Applied AI

8 Prerequisites for AI Transformation in Insurance Industry

Applied AI

AI Diagnostics in Healthcare: How Artificial Intelligence Streamlines Patient Care

Applied AI

AI Implementation in Healthcare: How to Keep Data Secure and Stay Compliant

Applied AI

AI and Predictive Analytics in Investment

Applied AI

7 Prerequisites for AI Tranformation in Healthcare Industry

Applied AI

How to build a highly effective data science program

Applied AI

How to Use Generative AI to Boost Your Sales

Applied AI

Best Practices for Integrating AI in Healthcare Without Disrupting Workflows

Applied AI

Key Generative AI Use Cases From 10 Industries

Applied AI

An Actionable Guide to Conversational AI for Customer Service

Applied AI

Making the moonshot real – what we can learn from a CTO using ML to transform drug discovery

Applied AI

What our community of 200+ ML engineers and data scientist is reading now

Applied AI

A Deep Dive Into Machine Learning Consulting: Case Studies and FAQs

Applied AI

How the U.S. can accelerate AI adoption: Tribe AI + U.S. Department of State

Applied AI

AI Consulting in Insurance Industry: Key Considerations for 2024 and Beyond

Applied AI

How AI Enhances Hospital Resource Management and Reduces Operational Costs

Applied AI

Advanced AI Analytics: Strategies, Types and Best Practices

Applied AI

AI Security: How to Use AI to Ensure Data Privacy in Finance Sector

Applied AI

AI in Construction: How to Optimize Project Management and Reducing Costs

Applied AI

How AI Enhances Real-Time Credit Risk Assessment in Lending

Applied AI

Leveraging Data Science – From Fintech to TradFi with Christine Hurtubise

Applied AI

AI and Blockchain Integration: How They Work Together

Applied AI

A Gentle Introduction to Structured Generation with Anthropic API

Applied AI

Self-Hosting Llama 3.1 405B (FP8): Bringing Superintelligence In-House

Applied AI

Key Takeaways from Tribe AI’s LLM Hackathon

Get started with Tribe

Companies

Find the right AI experts for you

Talent

Join the top AI talent network

Close
Cody Crumrine